JavaScript-Code

Seawater-Freshwater Interface JavaScript
Implementation

Code Review

function
Return

}

function
Return

(x, q, pf, ps, K) {

((2 = pf g * x) / ((ps - pf)

(x, q, pf, ps, K) {
(2 * pf g * x) / ((ps — pf)

(ps - pf) / K), 2));

}

function
Return

}

function
Return

(x, q, pf, ps, K) {

((2*pf*q=*x)/ ((ps - pf) *K) + 0.55 %
* q / (ps — pf) / K), 2));

(Xl ql Rl B) {
((g/B/K), 2) (1

(

/ (B * K =* (1+ B)));

}

function

Let Q
Let K

Let pf
Let ps
Let hs
Let hf

O {1

+document.
+document.

+document.
+document.
+document.
o,

Let L = +document.
Let step = +document.

Let formula = +document.

Ln).

('step').

*

K));

*

K) +

* 1000000;

* 100,

* 100;

* 100;

('formula').

(Cpf * q /

((pf

B / (1 +B) +2 % q * X

Return { Q, K, pf, ps, hs, hf, L, step, formula };
}

// Function to get the z value based on the selected formula
function GetZValue(Data, x) {

Let q = Data.Q / 8;

Let B = (Data.ps - Data.pf) / Data.pf;

Let kstar = Data.K * B;

// Switch case to select the formula based on the user's choice
Switch (Data.formula) {
Case Enumerator.GhybenHerzberg:
Return ghybenHerzberg(x, q, Data.pf, Data.ps, Data.K) / 100;
Case Enumerator.Glover:
Return glover(x, q, Data.pf, Data.ps, Data.K) / 100;
Case Enumerator.RumerHarleman:
Return rumerHarleman(x, q, Data.pf, Data.ps, Data.K) / 100;
Case Enumerator.Verruijt:
Return verruijt(x, q, Data.K, B) / 100;
Default:
Return 0;

// Function to update the table on the UI with the calculated values
function UpdateTable(table, xtoe, Data) {
Let rowsCount = Math.ceil(xtoe / Data.step);
Let data = [];
For (let I = 0; I < rowsCount; i++) {
Let x = I * Data.step;
Let z;
If (x < xtoe) {
Z = GetzValue(Data, x * 100);
} else {
Break;
}
Data.push([x.toFixed(3), z]1);
}
Data.push([xtoe.toFixed(d), GetZValue(Data, xtoe * 100)]);
Table.rows().remove().draw();
Table.rows.add(data).draw(false);

// Function to get the x value at the toe
function GetXToeValues(Data) {

Let step = 0.0001;

Let z = 0;

Let x = 0;

While (z < Data.hs / 100) {

Z = GetZValue(Data, (x * 100));
X += step;

h

Return x — 2 * step;

}

Let myChartInstance;

// Function to load the chart with the calculated values
function LoadChart(Data) {
Const ctx = document.getElementById('myChart');

If (myChartInstance) {
myChartInstance.destroy();
}

Ctx.classList.remove('d-none');

// Extract data from the table

Let tableData = $('#myTable').DataTable().rows().data().toArray();
Let labels = tableData.map(row => row[0]); // x values

Let data = tableData.map(row => row[1]); // z values

// Define formula names
Const formulaNames = [
"Ghyben-Herzberg",

"Glover",
"Rumer-Harleman",
"Verruijt"

1%

// Create a new chart instance and assign it to the global variable
myChartInstance = new Chart(ctx, {
type: 'line',
data: {
labels: labels,
datasets: [{
label: formulaNames[Data.formula],
data: data,
borderWidth: 1
3]
b
Options: {
Scales: {
X: {
Reverse: true, // Reverse the x-axis
Position: 'top' // Position the x-axis at the top
iy
Y: {

beginAtZero: true,
reverse: true,
position: 'right'
3
}
}
B
}

Enumerator = {
GhybenHerzberg: 0,
Glover: 1,
RumerHarleman: 2,

Verruijt: 3
}
Async function (table) {
Let Data = O;
Let xtoe = await (Data);
(table, xtoe, Data);
(Data);
}
Document. ('DOMContentLoaded', function () {
Document. ('calculate'). ('click', function ()
i
(table);
3);
Let table = new ('#myTable', {

Columns: [
{ label: 'x', name: 'x', title: 'x (m)' 1},
{ label: 'z', name: 'z', title: 'z (m)' },
1
3);
B);

Code Analysis and Explanation
Step-by-Step Explanation

Step 1: Adding Event Listeners and Initializing the Table

The code begins by setting up event listeners and initializing the HTML table using the
DataTable library. This occurs when the DOM content is fully loaded.

Event Listener for 'calculate’ Button:
The script attaches an event listener to the 'calculate' button. This triggers the
Calculate function upon a button click.
The Calculate function retrieves user input values, processes the calculations,
and updates the user interface accordingly.

Initializing the DataTable:
The table is initialized using the DataTable library with columns labeled 'x (m)"' and
'z (m)'. These columns will display the x and z values generated by the

calculations.
document. ('DOMContentLoaded', function () {
document. ('calculate'). ('click', function ()
{
(table);
});

let table = new
columns: [
{ label: 'x',
{ label: 'z',
]
3);
3);

('#myTable', {

name: 'x', title:

title:

'x (m)' },
'z (m)' 1},

name: 'z',

Step 2: Retrieving User Input Data

Upon clicking the 'calculate' button, the Calculate function is invoked. This function calls
GetUserData to collect and convert user inputs from the HTML form elements.

function O {
let Q = +document. 'o") * 1000000;
let K = +document. ('K"). * 100;
let pf = +document. ('pf"). ;
let ps = +document. ('ps"). ;
let hs = +document. ('hs') * 100;
let hf = 0;
let L = +document. LY. * 100;
let step = +document. ('step'). ;
let formula = +document. ('formula').

return { Q, K, pf, ps, hs, hf, L, step, formula };

Step 3: Calculating x at the Interface Toe

The GetXToeValues function calculates the x-coordinate at the toe of the seawater-
freshwater interface. This function iteratively calculates z-values for increasing x-values until
z is approximately equal to the solid height (hs) divided by 100 (converted to meters).

function (Data) {
let step = 0.0001;
let z = 0;
let x = 0;
while (z < Data. / 100) {
z = (Data, x * 100);
X += step;
}
return x - 2 * step;
¥

Step 4: Updating the Table with Calculated Values

The UpdateTable function populates the HTML table with the calculated x and z values.
This function iterates through the x-values up to the toe (xtoe), calculates the
corresponding z-values using the selected formula, and adds them to the table.

function (table, xtoe, Data) {
let rowsCount = . (xtoe / Data.);
let data = [];
for (let i = 0; i < rowsCount; i++) {
let x = i * Data. ;

let z;
if (x < xtoe) {
z = (Data, x * 100);
} else {
break;
}
data. ([x. (3), z1);
}
data. ([xtoe.), (Data, xtoe * 100)]);
table. Q. Q. Q;
table. . (data). (false);

Step 5: Loading the Chart with Calculated Values

Finally, the LoadChart function generates a visual representation of the calculated values
using Chart.js. It extracts x and z values from the table and plots them on a line chart. The
chart configuration includes labels and a dataset representing the calculated values.

function LoadChart(Data) {
const ctx = document.getElementById('myChart');

if (myChartInstance) {
myChartInstance.destroy();

}

ctx.classList.remove('d-none');

// Extract data from the table

let tableData = $('#myTable').DataTable().rows().data().toArray();
let labels = tableData.map(row => row[@]); // x values

let data = tableData.map(row => row[1]); // z values

// Define formula names
const formulaNames = [
"Ghyben-Herzberg",

"Glover",
"Rumer-Harleman",
"Verruijt"

17

// Create a new chart instance and assign it to the global variable
myChartInstance = new Chart(ctx, {
type: 'line',
data: {
labels: labels,
datasets: [{
label: formulaNames[Data.formula],

data: data,
borderWidth: 1
3]
}l
options: {
scales: {
x: {1
reverse: true, // Reverse the x-axis
position: 'top' // Position the x-axis at the top
Iy
y: 1
beginAtZero: true,
reverse: true, // Reverse the y-axis
position: 'right' // Position the y-axis at the right
}
¥
}
3);

Impact of Sea Level Rise (SLR) on Toe of SW-FW

Interface JavaScript Implementation

Code Review

function @)
1
let q = +document. ('g-2"). ;
let W = +document. ('w-2"). /365000;
let pf = +document. ('pf-2").
let ps = +document. ('ps-2"). ;
let K = +document. ('K-2"). ;
let L = +document. ('L-2"). ;
let Zo = +document. ('Zo-2").
let Az = +document. ('az-2').
let S = +document. ('s-2").
let hb = +document. ('hb-2"). ;
let & = (ps - pf) / pf;
let formula = document. ('formula-2'). ;
return { q, W, &, K, L, Zo, Az, S, hb, formula };
}
Enumerator = {
CFB: 0,
CHB: 1
}
function (Data)
{
let partl = (Data.q / Data.w) + Data.L;
let part2 = ((Data.K * Data.5 * (1 + Data.5) * (Data.Zo, 2)) /
(Data.w));
return partl - ((partl, 2) - part2);
}
function (Data) {
let partl = (Data.q / Data.W) + Data.L - (Data.Az / Data.S);
let part2 = ((Data.K * Data.& > (1 + Data.5) * (Data. +
Data.Az, 2)) / (Data.w));
return partl - ((partl, 2) - part2) + (Data.Az /
Data.S);
}
function (Data) {

let gPartl = (Data.K * ((Data.hb + Data.
(Data.Zo, 2))) / (2 * Data.L);
let gPart2 = Data.W * Data.L / 2;

let q = gPartl - gPart2;

, 2) - (1 + Data.

Data.q = q;
return CFBXTCalculte(Data);

function CHBXDashTCalculte(Data) {

let gPartl = (Data.K * (Math.pow(Data.hb + Data.Zo, 2) - (1 + Data.d) *
Math.pow(Data.Zo + Data.Az, 2))) / (2 * (Data.L - Data.Az / Data.S));

let qPart2 = Data.W * (Data.L - Data.Az / Data.S) / 2;

let q = gPartl - qPart2;

Data.q = q;

return CFBXDashTCalculte(Data);

}

function calculateXT(Data){
if(Data.formula == Enumerator.CFB)
{

let X = CFBXTCalculte(Data);

document.getElementById('XTR-2').value = X;
¥
else if(Data.formula == Enumerator.CHB)
{
let X = CHBXTCalculte(Data);
document.getElementById('XTR-2"').value = X;
¥
}
function calculateXTDash(Data){
if(Data.formula == Enumerator.CFB)
{
let XDash = CFBXDashTCalculte(Data);
document.getElementById("XT'R-2").value = XDash;
¥
else if(Data.formula == Enumerator.CHB)
{
let XDash = CHBXDashTCalculte(Data);
document.getElementById("XT'R-2").value = XDash;
}

document.addEventListener('DOMContentLoaded', function () {
document.getElementById('formula-2').addEventListener('change', function
O {
let formula = document.getElementById('formula-2').value;
if (formula == Enumerator.CFB) {
document.getElementById('qcontainer').classList.remove('d-
none');
document.getElementById('hbcontainer').classList.add('d-none');
}

else if (formula == Enumerator.CHB) {

document. ('qgcontainer'). . ('d-none');

document. ('hbcontainer'). . ('d-
none');
¥
£,
document. ('calculate-XT-2"'). ('click',
function () {
let Data = Q;
(Data);
3);
document. ("calculate-X'T-2"). ('click',
function () {
let Data = Q;
(Data);
3);
3);

Code Analysis and Explanation
Step-by-Step Explanation
Step 1: Adding Event Listeners and Managing Ul Interactions

The JavaScript code initializes by setting up event listeners to handle user interactions.
These listeners respond to user actions like selecting formulas and clicking calculation
buttons. This setup occurs when the DOM content is fully loaded.

Event Listener for Formula Selection:
An event listener is attached to the formula dropdown menu. Depending on the
selected formula, the relevant input fields are shown or hidden. This ensures
users input only the necessary values for their chosen formula.

Event Listeners for 'Calculate XT' and 'Calculate XT" Buttons:
These buttons trigger the computation of the interface's x-coordinate (XT) and its

adjusted value (XT') considering sea level rise. The respective functions
calculateXT and calculateXTDash are invoked upon clicking.

document. ('DOMContentLoaded', function () {
document. ('formula-2'). ('change', function
O {
let formula = document. ('formula-2'). ;
if (formula == Enumerator.CFB) {
document. ('qcontainer'). . ('d-
none');

document. ('hbcontainer'). . ('d-none');

} else if (formula == Enumerator.CHB) {

document. ('qcontainer'). . ('d-none');
document. ('hbcontainer'). . ('d-
none');
}
3);
document. ('calculate-XT-2'). ('click!',
function () {
let Data = Q;
(Data);
3);
document. ("calculate-X'T-2"). ('click’',
function () {
let Data = Q;
(Data);
3,
1),

Step 2: Retrieving User Input

The GetUserlnput function collects and processes user inputs from the HTML elements. It
converts the values into appropriate units and formats them into an object. This object
includes all necessary parameters for the calculations, such as flow rate, density, and
hydraulic conductivity.

function O {
let q = +document. ('g-2"). ;
let W = +document. ('w-2"). / 365000;
let pf = +document. ('pf-2"). ;
let ps = +document. ('ps-2"). ;
let K = +document. ('K-2"). ;
let L = +document. ('L-2"). ;
let Zo = +document. ('Zo-2"). ;
let Az = +document. ('az-2'). ;
let S = +document. ('s-2"). ;
let hb = +document. ('hb-2"). ;
let & = (ps - pf) / pf;
let formula = document. ('formula-2'). ;

return { q, W, §, K, L, Zo, Az, S, hb, formula };

Step 3: Calculating XT and XT' Values

The code includes functions to calculate the x-coordinate at the interface toe (XT) and its
modified value (XT') considering sea level rise. These functions apply specific hydrodynamic

formulas based on the user's selected formula.

CFB (Constant Flux Boundary) Calculation:
The CFBXTCalculte function computes the XT value using the Constant Flux
Boundary formula.

The CFBXDashTCalculte function calculates the XT' value under sea level rise

conditions.

function (Data) {

let partl = (Data.q / Data.w) + Data.L;

let part2 = ((Data.K * Data.5 * (1 + Data.d) * . (Data.Zo, 2)) /
(Data.w));

return partl - . (. (partl, 2) - part2);
}
function (Data) {

let partl = (Data.q / Data.W) + Data.L - (Data.Az / Data.S);

let part2 = ((Data.K * Data.& > (1 + Data.5) * . (Data. +
Data.Az, 2)) / (Data.w));

return partl - . (. (partl, 2) - part2) + (Data.Az /
Data.S);
}

CHB (Constant Head Boundary) Calculation:
The CHBXTCalculte function computes the XT value using the Constant Head
Boundary formula.
The CHBXDashTCalculte function calculates the XT' value considering the impact
of sea level rise.

function (Data) {
let qPartl = (Data.K * (. (Data. + Data.Zo, 2) - (1 + Data.s) *
(Data.Zo, 2))) / (2 * Data.L);

let gPart2 = Data.W * Data.L / 2;
let q = gPartl - gPart2;

Data.q = q;
return (Data);
}
function (Data) {
let gPartl = (Data.K * (. (Data.hb + Data.Zo, 2) - (1 + Data.5) =
(Data. + Data.Az, 2))) / (2 * (Data.L - Data. / Data.S));

let qPart2 = Data.W * (Data.L - Data. / Data.S) / 2;
let q = qPartl - gPart2;

Data.q = q;

return (Data);

Step 4: Updating Interface Values Based on Selected Formula

The functions calculateXT and calculateXTDash determine the x-coordinates (XT and XT')
based on the selected formula. They update the corresponding HTML elements with the
computed values.

function (Data) {
if (Data. == Enumerator.CFB) {
let X = (Data);
document. ('XTR-2"). = X;
} else if (Data. == Enumerator.CHB) {
let X = (Data);
document. ('XTR-2'). = X;
}
¥
function (Data) {
if (Data. == Enumerator.CFB) {
let XDash = (Data);
document. ("XT'R-2"). = XDash;
} else if (Data. == Enumerator.CHB) {
let XDash = (Data);
document. ("XT'R-2"). = XDash;
¥

