
JavaScript-Code
Seawater-Freshwater Interface JavaScript
Implementation
Code Review

// Ghyben-Herzberg formula function

function ghybenHerzberg(x, q, pf, ps, K) {

Return Math.sqrt((2 * pf * q * x) / ((ps – pf) * K));

}

// Glover formula function

function glover(x, q, pf, ps, K) {

Return Math.sqrt((2 * pf * q * x) / ((ps – pf) * K) + Math.pow((pf * q /

(ps – pf) / K), 2));

}

// Rumer Jr & Harleman formula function

function rumerHarleman(x, q, pf, ps, K) {

Return Math.sqrt((2 * pf * q * x) / ((ps – pf) * K) + 0.55 * Math.pow((pf

* q / (ps – pf) / K), 2));

}

// Verruijt formula function

function verruijt(x, q, K, B) {

Return Math.sqrt(Math.pow((q / B / K), 2) * (1 – B) / (1 + B) + 2 * q * x

/ (B * K * (1 + B)));

}

// Function to get user data from the HTML elements

function GetUserDate() {

// Fetch the values from the HTML elements and convert them to the

appropriate units

Let Q = +document.getElementById('Q').value * 1000000; // Flow rate

Let K = +document.getElementById('K').value * 100; // Hydraulic

conductivity

Let pf = +document.getElementById('pf').value; // Fluid density

Let ps = +document.getElementById('ps').value; // Solid density

Let hs = +document.getElementById('hs').value * 100; // Solid height

Let hf = 0; // Fluid height

Let L = +document.getElementById('L').value * 100; // Length

Let step = +document.getElementById('step').value; // Step size

Let formula = +document.getElementById('formula').value; // Selected

formula

Return { Q, K, pf, ps, hs, hf, L, step, formula };

}

// Function to get the z value based on the selected formula

function GetZValue(Data, x) {

Let q = Data.Q / 8;

Let B = (Data.ps – Data.pf) / Data.pf;

Let kstar = Data.K * B;

// Switch case to select the formula based on the user's choice

Switch (Data.formula) {

Case Enumerator.GhybenHerzberg:

Return ghybenHerzberg(x, q, Data.pf, Data.ps, Data.K) / 100;

Case Enumerator.Glover:

Return glover(x, q, Data.pf, Data.ps, Data.K) / 100;

Case Enumerator.RumerHarleman:

Return rumerHarleman(x, q, Data.pf, Data.ps, Data.K) / 100;

Case Enumerator.Verruijt:

Return verruijt(x, q, Data.K, B) / 100;

Default:

Return 0;

}

}

// Function to update the table on the UI with the calculated values

function UpdateTable(table, xtoe, Data) {

Let rowsCount = Math.ceil(xtoe / Data.step);

Let data = [];

For (let I = 0; I < rowsCount; i++) {

Let x = I * Data.step;

Let z;

If (x < xtoe) {

Z = GetZValue(Data, x * 100);

} else {

Break;

}

Data.push([x.toFixed(3), z]);

}

Data.push([xtoe.toFixed(4), GetZValue(Data, xtoe * 100)]);

Table.rows().remove().draw();

Table.rows.add(data).draw(false);

}

// Function to get the x value at the toe

function GetXToeValues(Data) {

Let step = 0.0001;

Let z = 0;

Let x = 0;

While (z < Data.hs / 100) {

Z = GetZValue(Data, (x * 100));

X += step;

}

Return x – 2 * step;

}

Let myChartInstance;

// Function to load the chart with the calculated values

function LoadChart(Data) {

Const ctx = document.getElementById('myChart');

If (myChartInstance) {

myChartInstance.destroy();

}

Ctx.classList.remove('d-none');

// Extract data from the table

Let tableData = $('#myTable').DataTable().rows().data().toArray();

Let labels = tableData.map(row => row[0]); // x values

Let data = tableData.map(row => row[1]); // z values

// Define formula names

Const formulaNames = [

"Ghyben-Herzberg",

"Glover",

"Rumer-Harleman",

"Verruijt"

];

// Create a new chart instance and assign it to the global variable

myChartInstance = new Chart(ctx, {

type: 'line',

data: {

labels: labels,

datasets: [{

label: formulaNames[Data.formula],

data: data,

borderWidth: 1

}]

},

Options: {

Scales: {

X: {

Reverse: true, // Reverse the x-axis

Position: 'top' // Position the x-axis at the top

},

Y: {

Code Analysis and Explanation
Step-by-Step Explanation

Step 1: Adding Event Listeners and Initializing the Table

beginAtZero: true,

reverse: true, // Reverse the x-axis

position: 'right' // Position the x-axis at the top

}

}

}

});

}

// Enumerator for the formulas

Enumerator = {

GhybenHerzberg: 0,

Glover: 1,

RumerHarleman: 2,

Verruijt: 3

}

// Function to calculate the values, update the table and load the chart

Async function Calculate(table) {

Let Data = GetUserDate();

Let xtoe = await GetXToeValues(Data);

UpdateTable(table, xtoe, Data);

LoadChart(Data);

}

// Event listener for the 'calculate' button

Document.addEventListener('DOMContentLoaded', function () {

Document.getElementById('calculate').addEventListener('click', function ()

{

Calculate(table);

});

// Initialize the table

Let table = new DataTable('#myTable', {

Columns: [

{ label: 'x', name: 'x', title: 'x (m)' },

{ label: 'z', name: 'z', title: 'z (m)' },

]

});

});

The code begins by setting up event listeners and initializing the HTML table using the
DataTable library. This occurs when the DOM content is fully loaded.

Step 2: Retrieving User Input Data

Upon clicking the 'calculate' button, the Calculate function is invoked. This function calls
GetUserData to collect and convert user inputs from the HTML form elements.

1. Event Listener for 'calculate' Button:
The script attaches an event listener to the 'calculate' button. This triggers the
Calculate function upon a button click.
The Calculate function retrieves user input values, processes the calculations,
and updates the user interface accordingly.

2. Initializing the DataTable:
The table is initialized using the DataTable library with columns labeled 'x (m)' and
'z (m)'. These columns will display the x and z values generated by the
calculations.

document.addEventListener('DOMContentLoaded', function () {

document.getElementById('calculate').addEventListener('click', function ()

{

Calculate(table);

});

// Initialize the table

let table = new DataTable('#myTable', {

columns: [

{ label: 'x', name: 'x', title: 'x (m)' },

{ label: 'z', name: 'z', title: 'z (m)' },

]

});

});

function GetUserData() {

let Q = +document.getElementById('Q').value * 1000000;

let K = +document.getElementById('K').value * 100;

let pf = +document.getElementById('pf').value;

let ps = +document.getElementById('ps').value;

let hs = +document.getElementById('hs').value * 100;

let hf = 0;

let L = +document.getElementById('L').value * 100;

let step = +document.getElementById('step').value;

let formula = +document.getElementById('formula').value;

return { Q, K, pf, ps, hs, hf, L, step, formula };

}

Step 3: Calculating x at the Interface Toe

The GetXToeValues function calculates the x-coordinate at the toe of the seawater-
freshwater interface. This function iteratively calculates z-values for increasing x-values until
z is approximately equal to the solid height (hs) divided by 100 (converted to meters).

Step 4: Updating the Table with Calculated Values

The UpdateTable function populates the HTML table with the calculated x and z values.
This function iterates through the x-values up to the toe (xtoe), calculates the
corresponding z-values using the selected formula, and adds them to the table.

Step 5: Loading the Chart with Calculated Values

Finally, the LoadChart function generates a visual representation of the calculated values
using Chart.js. It extracts x and z values from the table and plots them on a line chart. The
chart configuration includes labels and a dataset representing the calculated values.

function GetXToeValues(Data) {

let step = 0.0001;

let z = 0;

let x = 0;

while (z < Data.hs / 100) {

z = GetZValue(Data, x * 100);

x += step;

}

return x - 2 * step;

}

function UpdateTable(table, xtoe, Data) {

let rowsCount = Math.ceil(xtoe / Data.step);

let data = [];

for (let i = 0; i < rowsCount; i++) {

let x = i * Data.step;

let z;

if (x < xtoe) {

z = GetZValue(Data, x * 100);

} else {

break;

}

data.push([x.toFixed(3), z]);

}

data.push([xtoe.toFixed(4), GetZValue(Data, xtoe * 100)]);

table.rows().remove().draw();

table.rows.add(data).draw(false);

}

function LoadChart(Data) {

const ctx = document.getElementById('myChart');

if (myChartInstance) {

myChartInstance.destroy();

}

ctx.classList.remove('d-none');

// Extract data from the table

let tableData = $('#myTable').DataTable().rows().data().toArray();

let labels = tableData.map(row => row[0]); // x values

let data = tableData.map(row => row[1]); // z values

// Define formula names

const formulaNames = [

"Ghyben-Herzberg",

"Glover",

"Rumer-Harleman",

"Verruijt"

];

// Create a new chart instance and assign it to the global variable

myChartInstance = new Chart(ctx, {

type: 'line',

data: {

labels: labels,

datasets: [{

label: formulaNames[Data.formula],

data: data,

borderWidth: 1

}]

},

options: {

scales: {

x: {

reverse: true, // Reverse the x-axis

position: 'top' // Position the x-axis at the top

},

y: {

beginAtZero: true,

reverse: true, // Reverse the y-axis

position: 'right' // Position the y-axis at the right

}

}

}

});

}

Impact of Sea Level Rise (SLR) on Toe of SW-FW
Interface JavaScript Implementation
Code Review

function GetUserInput()

{

let q = +document.getElementById('q-2').value;

let W = +document.getElementById('W-2').value/365000;

let pf = +document.getElementById('pf-2').value

let ps = +document.getElementById('ps-2').value;

let K = +document.getElementById('K-2').value;

let L = +document.getElementById('L-2').value;

let Zo = +document.getElementById('Zo-2').value

let Δz = +document.getElementById('Δz-2').value

let S = +document.getElementById('S-2').value

let hb = +document.getElementById('hb-2').value;

let δ = (ps - pf) / pf;

let formula = document.getElementById('formula-2').value;

return { q, W, δ, K, L, Zo, Δz, S, hb, formula };

}

Enumerator = {

CFB: 0,

CHB: 1

}

function CFBXTCalculte(Data)

{

let part1 = (Data.q / Data.W) + Data.L;

let part2 = ((Data.K * Data.δ * (1 + Data.δ) * Math.pow(Data.Zo, 2)) /

(Data.W));

return part1 - Math.sqrt(Math.pow(part1, 2) - part2);

}

function CFBXDashTCalculte(Data) {

let part1 = (Data.q / Data.W) + Data.L - (Data.Δz / Data.S);

let part2 = ((Data.K * Data.δ * (1 + Data.δ) * Math.pow(Data.Zo +

Data.Δz, 2)) / (Data.W));

return part1 - Math.sqrt(Math.pow(part1, 2) - part2) + (Data.Δz /

Data.S);

}

function CHBXTCalculte(Data) {

let qPart1 = (Data.K * (Math.pow(Data.hb + Data.Zo, 2) - (1 + Data.δ) *

Math.pow(Data.Zo, 2))) / (2 * Data.L);

let qPart2 = Data.W * Data.L / 2;

let q = qPart1 - qPart2;

Data.q = q;

return CFBXTCalculte(Data);

}

function CHBXDashTCalculte(Data) {

let qPart1 = (Data.K * (Math.pow(Data.hb + Data.Zo, 2) - (1 + Data.δ) *

Math.pow(Data.Zo + Data.Δz, 2))) / (2 * (Data.L - Data.Δz / Data.S));

let qPart2 = Data.W * (Data.L - Data.Δz / Data.S) / 2;

let q = qPart1 - qPart2;

Data.q = q;

return CFBXDashTCalculte(Data);

}

function calculateXT(Data){

if(Data.formula == Enumerator.CFB)

{

let X = CFBXTCalculte(Data);

document.getElementById('XTR-2').value = X;

}

else if(Data.formula == Enumerator.CHB)

{

let X = CHBXTCalculte(Data);

document.getElementById('XTR-2').value = X;

}

}

function calculateXTDash(Data){

if(Data.formula == Enumerator.CFB)

{

let XDash = CFBXDashTCalculte(Data);

document.getElementById("XT'R-2").value = XDash;

}

else if(Data.formula == Enumerator.CHB)

{

let XDash = CHBXDashTCalculte(Data);

document.getElementById("XT'R-2").value = XDash;

}

}

document.addEventListener('DOMContentLoaded', function () {

document.getElementById('formula-2').addEventListener('change', function

() {

let formula = document.getElementById('formula-2').value;

if (formula == Enumerator.CFB) {

document.getElementById('qcontainer').classList.remove('d-

none');

document.getElementById('hbcontainer').classList.add('d-none');

}

else if (formula == Enumerator.CHB) {

Code Analysis and Explanation
Step-by-Step Explanation

Step 1: Adding Event Listeners and Managing UI Interactions

The JavaScript code initializes by setting up event listeners to handle user interactions.
These listeners respond to user actions like selecting formulas and clicking calculation
buttons. This setup occurs when the DOM content is fully loaded.

document.getElementById('qcontainer').classList.add('d-none');

document.getElementById('hbcontainer').classList.remove('d-

none');

}

});

document.getElementById('calculate-XT-2').addEventListener('click',

function () {

let Data = GetUserInput();

calculateXT(Data);

});

document.getElementById("calculate-X'T-2").addEventListener('click',

function () {

let Data = GetUserInput();

calculateXTDash(Data);

});

});

1. Event Listener for Formula Selection:
An event listener is attached to the formula dropdown menu. Depending on the
selected formula, the relevant input fields are shown or hidden. This ensures
users input only the necessary values for their chosen formula.

2. Event Listeners for 'Calculate XT' and 'Calculate XT'' Buttons:
These buttons trigger the computation of the interface's x-coordinate (XT) and its
adjusted value (XT') considering sea level rise. The respective functions
calculateXT and calculateXTDash are invoked upon clicking.

document.addEventListener('DOMContentLoaded', function () {

document.getElementById('formula-2').addEventListener('change', function

() {

let formula = document.getElementById('formula-2').value;

if (formula == Enumerator.CFB) {

document.getElementById('qcontainer').classList.remove('d-

none');

document.getElementById('hbcontainer').classList.add('d-none');

Step 2: Retrieving User Input

The GetUserInput function collects and processes user inputs from the HTML elements. It
converts the values into appropriate units and formats them into an object. This object
includes all necessary parameters for the calculations, such as flow rate, density, and
hydraulic conductivity.

Step 3: Calculating XT and XT' Values

The code includes functions to calculate the x-coordinate at the interface toe (XT) and its
modified value (XT') considering sea level rise. These functions apply specific hydrodynamic

} else if (formula == Enumerator.CHB) {

document.getElementById('qcontainer').classList.add('d-none');

document.getElementById('hbcontainer').classList.remove('d-

none');

}

});

document.getElementById('calculate-XT-2').addEventListener('click',

function () {

let Data = GetUserInput();

calculateXT(Data);

});

document.getElementById("calculate-X'T-2").addEventListener('click',

function () {

let Data = GetUserInput();

calculateXTDash(Data);

});

});

function GetUserInput() {

let q = +document.getElementById('q-2').value;

let W = +document.getElementById('W-2').value / 365000;

let pf = +document.getElementById('pf-2').value;

let ps = +document.getElementById('ps-2').value;

let K = +document.getElementById('K-2').value;

let L = +document.getElementById('L-2').value;

let Zo = +document.getElementById('Zo-2').value;

let Δz = +document.getElementById('Δz-2').value;

let S = +document.getElementById('S-2').value;

let hb = +document.getElementById('hb-2').value;

let δ = (ps - pf) / pf;

let formula = document.getElementById('formula-2').value;

return { q, W, δ, K, L, Zo, Δz, S, hb, formula };

}

formulas based on the user's selected formula.

CFB (Constant Flux Boundary) Calculation:
The CFBXTCalculte function computes the XT value using the Constant Flux
Boundary formula.
The CFBXDashTCalculte function calculates the XT' value under sea level rise
conditions.

function CFBXTCalculte(Data) {

let part1 = (Data.q / Data.W) + Data.L;

let part2 = ((Data.K * Data.δ * (1 + Data.δ) * Math.pow(Data.Zo, 2)) /

(Data.W));

return part1 - Math.sqrt(Math.pow(part1, 2) - part2);

}

function CFBXDashTCalculte(Data) {

let part1 = (Data.q / Data.W) + Data.L - (Data.Δz / Data.S);

let part2 = ((Data.K * Data.δ * (1 + Data.δ) * Math.pow(Data.Zo +

Data.Δz, 2)) / (Data.W));

return part1 - Math.sqrt(Math.pow(part1, 2) - part2) + (Data.Δz /

Data.S);

}

CHB (Constant Head Boundary) Calculation:
The CHBXTCalculte function computes the XT value using the Constant Head
Boundary formula.
The CHBXDashTCalculte function calculates the XT' value considering the impact
of sea level rise.

function CHBXTCalculte(Data) {

let qPart1 = (Data.K * (Math.pow(Data.hb + Data.Zo, 2) - (1 + Data.δ) *

Math.pow(Data.Zo, 2))) / (2 * Data.L);

let qPart2 = Data.W * Data.L / 2;

let q = qPart1 - qPart2;

Data.q = q;

return CFBXTCalculte(Data);

}

function CHBXDashTCalculte(Data) {

let qPart1 = (Data.K * (Math.pow(Data.hb + Data.Zo, 2) - (1 + Data.δ) *

Math.pow(Data.Zo + Data.Δz, 2))) / (2 * (Data.L - Data.Δz / Data.S));

let qPart2 = Data.W * (Data.L - Data.Δz / Data.S) / 2;

let q = qPart1 - qPart2;

Data.q = q;

return CFBXDashTCalculte(Data);

}

Step 4: Updating Interface Values Based on Selected Formula

The functions calculateXT and calculateXTDash determine the x-coordinates (XT and XT')
based on the selected formula. They update the corresponding HTML elements with the
computed values.

function calculateXT(Data) {

if (Data.formula == Enumerator.CFB) {

let X = CFBXTCalculte(Data);

document.getElementById('XTR-2').value = X;

} else if (Data.formula == Enumerator.CHB) {

let X = CHBXTCalculte(Data);

document.getElementById('XTR-2').value = X;

}

}

function calculateXTDash(Data) {

if (Data.formula == Enumerator.CFB) {

let XDash = CFBXDashTCalculte(Data);

document.getElementById("XT'R-2").value = XDash;

} else if (Data.formula == Enumerator.CHB) {

let XDash = CHBXDashTCalculte(Data);

document.getElementById("XT'R-2").value = XDash;

}

}

